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A B S T R A C T   

Rapid deployment of wind energy plays an important role in China’s proposed energy transition to carbon 
neutrality before 2060. Greenhouse gas (GHG) emissions are, however, unavoidable during the entire life cycle of 
wind energy from manufacturing to disposal. It is important to estimate these GHG emissions and the emission 
intensity for programs of energy transition. In this study, simplified LCA models and engineering-based models 
were developed to provide a comprehensive estimate of the GHG emission intensity from onshore wind energy in 
China at provincial and national scales. Results showed that in 2019, the GHG emission intensity per unit power 
generation was 19.88 g CO2 eq/kWh (provincial intensity ranges from 13.59 to 34.50 g CO2 eq/kWh). The results 
indicated that onshore wind energy in China has an emission intensity more than 98% lower than traditional 
fossil fuels and the mitigation effect can reach 84%–98% compared to the energy mix in 2020. The effects on 
emission intensity of shifting the turbine mix towards larger sizes, reducing wind curtailment and using advanced 
designs to improve efficiency were further investigated. Advanced design of turbines can further decrease GHG 
emission intensity by 21.6%, more than the scenario of reducing curtailment (5.4%), while the emission intensity 
could be reduced by 2.1% under the scenario of shifting the turbine mix towards larger sizes. The results will aid 
future energy-mix scenario design and policy formulation.   

1. Introduction 

In September 2020, China pledged to reach carbon neutrality before 
2060 to tackle climate change. To achieve this target, a deep decar
bonization of the energy sector, the biggest source of anthropogenic 
carbon emissions, is necessary (EF China, 2020). Renewable energy 
plays an essential role in this transition to a low-carbon energy system 
(Normile, 2020), and, in particular, wind energy is the cornerstone of 
long-term plans to achieve carbon neutrality, and to mitigate climate 
change, air pollution and other energy-related environmental impacts 
(Davidson et al., 2016). Wind energy was the fastest-growing renewable 
energy source in the past decade in China, with increasing numbers of 
wind farms with large-scale turbines being built. The total installed wind 
capacity of China reached 210 GW in 2019, accounting for 34% of the 
global installed capacity (IRENA, 2020) and more than the sum of the 
capacities of the next nine biggest capacity countries. 

Over the past ten years, the wind energy market of China has been 

heading towards increasingly large wind turbines for higher energy ef
ficiency and faster returns on investment. The mean capacity of newly- 
installed wind turbines in China reached 2.18 MW per turbine in 2018, 
while the proportion of turbines ≥2 MW increased from 9% in 2008 to 
96% in 2018 (CWEA, 2019). Larger wind turbines with higher nominal 
power are generally more economically efficient than smaller ones. 
Electrical efficiency is expected to reach 96–97% for turbines rated at 
2.5–3 MW, but only 60–70% for turbines with 0.5–10 kW (McTavish 
et al., 2013). Increasing rotor diameters and hub heights also have great 
potential to increase the efficiency of energy capture and thus annual 
production (Arias-Rosales and Osorio-Gómez, 2018). Furthermore, wind 
energy curtailment, has been reduced from 21% in 2016 to 4% in 2019 
(Table S1; NEA, 2017; NEA, 2020) through the expansion of electric 
power transmission networks and the rapid development of pumped 
hydro storage and electric boilers. The policy on the development of 
wind energy, set out in the 14th five-year plan of China, claims the target 
is energy quality improvement while simultaneously considering both 
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environmental and economic potential (CPC, 2020). Therefore, the 
development of larger and more efficient wind turbines, as well as the 
improvement of power grids, is becoming an imperative trend. 

Although renewable energy is low-carbon energy, it is not carbon 
free across its entire life cycle. Considering all the stages from ‘cradle’ to 
‘grave’, wind systems unavoidably generate greenhouse gas (GHG) 
emissions during turbine manufacturing, system installation, material 
transportation and final disposal. For example, the global median GHG 
emission intensity (expressed as g CO2-equivalent per kWh) of wind 
energy is 19 ± 13 g CO2 eq/kWh (Schlömer et al., 2014), and is of the 
same order of magnitude as other renewable energy sources, such as 
solar power, geothermal and hydropower (usually less than 100 g CO2 
eq/kWh; Sathaye et al., 2011). However, the emission intensity of wind 
energy is affected by factors such as turbine size (nominal power, rotor 
diameter and hub height), turbine design, wind capacity and curtail
ment rate (Lu et al., 2016; Bhandari et al., 2020). To quantify the actual 
emission reduction and mitigation potential due to wind energy in 
China, it is essential to understand how GHG emission intensity changes 

with increasing turbine size, more efficient design and decreasing wind 
curtailment rate, and to comprehensively assess the regional and na
tional emission intensities of wind energy. Taken together with the 
emission intensities of other renewable energy sources and fossil fuels, 
such an assessment will also be useful for strategically optimizing the 
energy mix during China’s energy transition. 

Life cycle assessment (LCA) is a common method for estimating the 
emission intensity of renewable energy sources. A number of LCA 
studies have analyzed and estimated GHG emissions of wind energy in 
China (Table 1) and in other countries (e.g. Alsaleh and Sattler, 2019; 
Šerešová et al., 2020; Teffera et al., 2021). However, most of these 
studies focused on specific wind farms or turbines, and thus there are 
large variations in the results, caused by differences in assumptions 
regarding turbine size, turbine design and site-specific wind potential. 
This variation hampers the accurate assessment of GHG emissions at the 
regional and national levels, and makes comparisons with alternative 
renewable energy sources difficult. The studies also have technical 
limitations, such as the misuse of capacity factors and a lack of life cycle 

Table 1 
Overview of LCA studies of China’s wind energy.  

GHG intensity (g CO2 

eq/kWh) 
Number of environmental 
indicators being studied 

Nominal power of each turbine 
(MW per turbine) 

Total capacity of the wind 
farm (MW) 

Load factor Methods* Citation 

6.93 1 1 10 22.83% PLCA Zou and Ma 
(2003) 

3.60 1 0.6 2.4 42.60% PLCA Lee and Tzeng 
(2008)  1 0.66 2.54 30.90%  

1 1.75 3.5 18.90% 
7.20 1 1.25 30 24.88% PLCA Chen et al. 

(2011) 
9.47 1 1 50 29.51% PLCA Guo et al. (2012) 
28.08 2 2 – 30.82% PLCA Gao et al. (2012) 
57.38 4 3 – – PLCA Shao et al. 

(2012) 
39.31 2 1.5 49.5 23.63% PLCA Wang (2012) 
7.20 1 1.5 49.5 25.76% PLCA Yang and Chen 

(2013) 
12.89 1 1.5 49.5 22.81% PLCA Zhao and Wang 

(2014) 
47.10 5 1.5 198 25.37% PLCA Li et al. (2015) 
20.70 1 2 – 23.27% PLCA Yang et al. 

(2015) 
7.55 1 2 48 25.80% PLCA Ji and Chen 

(2016) 
9.50 3 1.5 49.5 – PLCA Jia et al. (2016) 
13.06 1 2 – 27.77% PLCA Wang and Qiu 

(2017) 
8.65 11 – – 27.00%, 

22.5% 
PLCA Xu et al. (2018) 

28.56 10 1.5 49.5 23.66% PLCA Wang et al. 
(2019) 

51.50 7 1.5 – – PLCA Gao et al. (2019) 
86.50 7 0.85 120.7 – 
65.90 7 0.85 22.1 – 
31.36 5 1.5 49.5 23.63% PLCA Li et al. (2020a) 
2.02 1 0.6 2.4 42.19% PLCA Xie et al. (2020) 
2.71 1 0.66 2.54 26.74% 
7.80 1 1.75 3.5 22.11% 
4.43 1 1.5 49.5 27.31% PLCA Li et al. (2020b) 
69.90 2 – – – IO-LCA Li et al. (2012) 
25.89 4 1.25 30 – IO-LCA Xue et al. (2015) 
5.6 1 – – – IO-LCA Wang et al. 

(2016)  
2 – – – IO-LCA Zhang et al. 

(2017) 
8.42 1 – – 51.37% Not 

specified 
Ding et al. 
(2017) 

45.00 7 2 24 24.57% IO-LCA Yue et al. (2019) 
19.30 19 – 150 26.12% Not 

specified 
Li et al. (2019) 

8.49 3 – – – Not 
specified 

Ding et al. 
(2019) 

*Methods used in the study: PLCA, process-based LCA method; IO-LCA: input-output LCA method; Not specified, the method was not specified in the original study. 
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inventories (for details, see Section 2). Detailed LCA work is sophisti
cated, time-consuming and may be impractical in some cases. Therefore, 
it is both useful and necessary to propose generic LCA models, based on 
harmonized data from LCA studies (Mendecka and Lombardi, 2019), for 
estimating GHG emissions from wind energy in China. 

This paper aims to: 1) quantify the effects of wind turbine size on 
GHG emissions; 2) propose a robust and generic methodology to pro
duce simplified LCA models for China based on nominal power; 3) es
timate the GHG emissions of China’s onshore wind energy at provincial 
and national scales based on the simplified LCA models; 4) predict GHG 
mitigation potential under scenarios of business as usual (BAU), 
reducing wind curtailment and using advanced designs to improve 
efficiency. 

The remaining part of the paper is organized as follows. In Section 2, 
we review existing LCA studies of China’s wind energy and describe the 
simplified LCA models that could potentially be used for the regional 
estimation of GHG emissions from wind energy. In Section 3, we 
describe the methods, database and harmonization procedures used. 
Section 4 concerns the proposed models and their predictions, while in 
Section 5, we interpret the model output and discuss the limitations and 
implications of this work. Finally, we present concluding remarks and 
recommendations for future studies. 

2. Review of LCA studies of China’s wind energy and simplified 
LCA models 

2.1. Brief review of LCA studies 

LCA is a systematic and comprehensive method for assessing the 
energy uses, resources and the related environmental impacts of a 
product or service. There has been extensive research employing LCA to 
analyze the environmental impacts of China’s wind farms, which pro
vides a good overview of the energy consumption and associated envi
ronmental pollution of the wind power industry. GHG emission is the 
most widely covered index in the existing studies, with the GHG emis
sion intensity for China, expressed as 100-year global warming poten
tial, reported to vary from 0.28 to 86.50 g CO2 eq/kWh with a median 
value of 12.97 g CO2 eq/kWh and a mean of 24.28 g CO2 eq/kWh 
(Table 1). This mean value is slightly higher than the mean value for 
European countries (15 g CO2 eq/kWh; Schlömer et al., 2014). In all the 
studies, the manufacturing, construction, operation and disposal stages 
are included within the system boundary. The manufacture of materials 
usually dominates the GHG emissions in all life cycle stages, and can 
account for more than 90% of total emission values (Jia et al., 2016). 
The steel and concrete consumption of turbines and foundations is al
ways the greatest contributor to emissions in the manufacturing stage. 
When land use change (e.g. deforestation) is considered, construction 
and installation can supersede manufacturing as the most important part 
with regard to energy use and emissions (Gao et al., 2019). Emissions 
associated with transportation are generally found to be negligible and 
are sometimes integrated into the construction stage (Xie et al., 2020). 
Some studies consider the recycling of materials and thus obtain nega
tive emissions for the disposal stage (Xu et al., 2018; Yang et al., 2015). 

Current knowledge and the methods used in Chinese LCA studies are, 
however, still limited in the following ways. First, the wind turbine load 
factors used in these studies are significantly higher than the practical 
capacity factor values. The practical capacity factor for China is roughly 
19.31% (Table S1), whereas the values assumed in the studies vary from 
22.11% to 51.37% with a mean of 26.87% (Table 1). Second, emission 
factors for the same material are not consistent across the different 
studies. For example, the GHG emission factor for copper used by Li et al. 
(2015) is 18.38 kg/kg, while that used by Li et al. (2020b) is 
0.632 kg/kg. Third, a life cycle inventory is not provided in some 
studies, meaning that there is a lack of information on the emission 
contributions of different materials, making re-analysis difficult. Fourth, 
different system boundaries are used in different studies. These 

inconsistencies in system boundaries, load factors and the emission 
factors of materials lead to large discrepancies in the results and 
contribute to their unreliability. Fifth, few studies focus on regional and 
national GHG emissions of wind energy. “Top-down” input-output LCA 
(IO-LCA) at regional and national scales can help to pinpoint crucial 
areas of consumption and drivers of environmental impacts (Hellweg 
and Canals, 2014). However, it is problematic to use IO-LCA results 
based only on data from a limited number of wind farms in China to 
support wind-development policy-making decisions. Furthermore, these 
studies do not cover all turbine types, in particular the huge newly-built 
modern turbines. Taking all these points into account, it is clear that 
harmonization of the previous LCA results is essential if the LCA models 
for China are to be developed further. 

2.2. Proposed simplified LCA models 

Detailed LCA analysis is a sophisticated and rather time-consuming 
approach which may be impractical in some cases (Mendecka and 
Lombardi, 2019). Simplified LCA modelling, which usually predicts 
environmental impacts based on regressions between the impacts and 
the main affecting parameters, is a fairly effective method for quanti
fying GHG emissions compared to the comprehensive LCA and can 
supplement detailed LCA work for policy support (Caduff et al., 2012; 
Mendecka and Lombardi, 2019). It can provide a synthetic and universal 
mechanism for predicting total emissions and their variations and the 
effects of independent parameters. Being an empirical model, the con
struction of a simplified LCA model depends on the availability of a large 
quantity of published data from processed-based LCA studies (i.e. LCA 
studies using the bottom-up method). LCA models are usually set in 
specific geographical conditions, which require further validation when 
applied in certain regions. For example, the model of Caduff et al. (2012) 
was tuned assuming a wind shear exponent of 1/7 and wind velocity of 
5 m/s at a height of 10 m. 

Several simplified LCA models have been developed based on LCA 
studies (Table 2). For example, Caduff et al. (2012) developed an 
empirical scaling model, using data from 12 published studies, to 
describe the negative relationship between GHG emission and nominal 
power. Padey et al. (2013) proposed a generic model of GHG emission 
for wind turbines over 500 kW using a Monte Carlo simulation. Scaling 
relationships were defined between material consumption and nominal 
power, and determined emission performance based on load factor. 
Mendecka and Lombardi (2019) synthesized 143 studies, consisting of 
115 onshore and 28 offshore wind farms, and developed simplified LCA 
models using power functions to predict four factors: GHG emissions, 
acidification potential, eutrophication potential and cumulative energy 
demand based on nominal power. The results showed that the 
size-related effects of offshore wind turbines are much greater than 
those of onshore turbines, and that wind velocity affects the different 
impact factors in different ways. However, these LCA models are usually 
based on LCA studies of wind turbines and farms in Europe, which 
cannot be directly applied to quantifying the GHG emissions of China’s 
wind energy due to differences in technology and design. To do this, 
simplified LCA models for China are required. 

Table 2 
Overview of studies using simplified LCA models.  

Nominal power 
range (kW) 

Types of 
turbine 

Number of 
sources 

Region Study 

1–5000 148 73 Europe Arias-Rosales and 
Osorio-Gómez (2018) 

500–3000 116 2 Europe Padey et al. (2013) 
30–3000 12 8 Europe Caduff et al. (2012) 
600–3000 24 20 China This study  
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3. Methods 

Harmonization procedure was conducted following LCA steps in 
accordance with the ISO 14040/44 standard: goal and scope definition, 
inventory analysis, impact assessment, and interpretation (ISO 2006a; 
ISO 2006b). The intended aim of the work is to develop an empirical 
LCA model to estimate emission intensities of wind energy under 
different scenarios. The data from previous LCA studies was harmonized 
to create the life cycle inventory and construct simplified LCA models for 
estimating GHG emissions from wind energy in China. To develop the 
simplified LCA models used here, the nominal power (kW) of turbines 
was treated as the size variable and GHG emissions were expressed as 
100-year global warming potential (g CO2 eq). GHG emissions occurring 
during the life cycle of wind turbines essentially depend on four factors: 
(i) turbine size, (ii) turbine design, (iii) region-specific wind conditions 
and (iv) manufacturing process (Bhandari et al., 2020). We constructed 
engineering-based models to quantify the effects of design efficiency, 
using a database of installed wind turbines in China (https://www.thew 
indpower.net). Practical capacity factors (annual electricity production 
divided by installed capacity) for different regions were used to repre
sent the region-specific wind conditions. The parameters of the simpli
fied LCA models were then validated by the regression results of 
engineering-based models. Three scenarios were established to quan
tify the effects on the GHG emission intensities of: i) shifting the turbine 
mix towards larger sizes; ii) using more-efficient advanced turbine de
signs; iii) increasing the wind generations through reducing wind 
curtailment. The detailed process of this work is shown in Fig. 1. 

3.1. LCA study search strategy 

We conducted a search on the Web of Science using the following 
strategy: ‘life cycle assessment/LCA’ and ‘China’ and ‘greenhouse gas/ 
GHG’ or ‘global warming potential/GWP’ or ‘carbon footprint’ and 

‘wind energy’ or ‘wind turbine’. A total of 39 peer-reviewed papers were 
found, and 28 process-based LCA studies (using the bottom-up method) 
of onshore wind farms or turbines that contained at least one environ
mental indicator were selected for further analysis and for constructing 
the simplified LCA models. 

3.2. Harmonization procedure 

To ensure that the GHG emissions results were comparable, the life 
cycle inventories of the selected studies were harmonized with regard to 
system boundaries, background processes, emission factors, load factors 
and lifetime. We improved the harmonization procedure used by Men
decka et al. (2019) by integrating more parameters. The harmonized 
system boundaries consisted of: manufacturing, construction and 
installation, operation and maintenance, and transportation and 
disposal. The GHG emission contributions of the missing stages in 
several studies were identified using the ratio to the manufacturing 
stage. For example, the emissions from the disposal stage were treated as 
10% of those from the manufacturing stage (Xie et al., 2020). The 
emission factors of materials were unified (Table S2). The selected wind 
turbines and the harmonized GHG emissions of the different materials in 
each turbine are provided in Table S3. The electricity production effi
ciency (annual electricity production/installed capacity) was treated as 
the capacity factor of China and each province in 2019, rather than using 
the load factor of a single turbine, which might eliminate the 
geographical effects of different regions (Table S1). Wind turbine life
time was harmonized to 20 years. We recalculated the GHG emissions 
using these harmonized parameters (Table 3). 

3.3. Simplified LCA models 

After the harmonization described in Section 3.2, the data from the 
28 LCA studies were used to construct the simplified LCA models of the 

Fig. 1. Illustration of the research process. The 
detailed LCA data from selected studies was 
harmonized to construct simplified LCA models 
(GHG vs. nominal power). The wind turbine data
base was used to build engineering-based models. 
Then, the regression coefficients of simplified LCA 
models and engineering-based models (nominal 
power vs. engineering-based size) were compared 
to test their consistency. A series of scenarios were 
built to quantify the mitigation potential of 
installation of larger turbines, reduction in wind 
curtailment, and advancement in turbine design. 
Finally, the constructed models were used to esti
mate GHG emission intensities in 2019 and under 
different scenarios.   
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relationships between GHG emissions and size parameters (size-based 
models) or power (GHG-NP models). Given the fact that nominal power 
is the most accessible data and a critical indicator related to electrical 
power generation, a GHG-NP model was used in this study to predict 
GHG emissions. The GHG-NP model was expressed as a power equation 
(Caduff et al., 2012; Mendecka and Lombardi, 2019; Mendecka et al., 
2018):  

GHG = bNPα                                                                                  (1) 

The scaling factor α was defined as the environmental efficiency 
indicator that represents the effects of size on emission reduction; NP is 
nominal power; b is the regression coefficient. The size parameters used 
in the simplified models were total mass (Mtotal), turbine mass (Mturbine), 
foundation mass (Mfoundation) and engineering-based size D2h3/7 and D2. 
The GHG-NP model, fitted by harmonized GHG emissions and nominal 
power from the detailed LCA data, was used to estimate GHG emissions 
at the provincial and national scales. 

3.4. Engineering-based models 

We introduced engineering-based models for: 1) comparing with 
simplified LCA models to test their robustness and consistency due to the 
limited data available from selected studies; 2) providing estimates of 
the average and potential maximum design efficiency based on the 
current productivity of the wind power industry. Engineering-based 
models relate to the relationship between nominal power and 
engineering-based size factors such as rotor diameter (D), hub height 
(h), swept area, and turbine mass (Mtotal). The specific rating of wind 
turbines, defined as nominal power per rotor swept area and expressed 
in watts per square meter (W m− 2), is one of the key metrics of turbine 
design (Malcolm and Cotrell, 2004). Arias-Rosales and Osorio-Gómez 

(2018) showed that nominal power is proportional to D2. Considering 
the swept area and average wind speed at hub height, Caduff et al. 
(2012) suggested that nominal power and GHG emission should be 
proportional to D2h3/7 and turbine mass. Therefore, in this work, the 
scaling factor of nominal power and engineering-based size (i.e., D2h3/7 

and D2) were defined as the metric of turbine design efficiency. All the 
theoretical engineering-based scaling laws previously used are listed in 
Table 4 for comparison with the engineering-based models for China. 

The engineering-based models for China have been developed to 
describe the scaling relationships between D, h and nominal power, and 
represent the current turbine design efficiency implemented in China. A 
total of 83 types of wind turbine, from 361 wind farms, were used to 
establish these engineering-based models. The database containing 
nominal power, rotor diameter, hub height, turbine model and devel
oper was downloaded from the Wind Energy Market Intelligence 
(https://www.thewindpower.net) on October 30th, 2020. A practical 
engineering-based model was constructed based on the relationships 
between nominal power and size parameters, following the predicted 
power form (Table 4), to identify the actual and potential design effi
ciency of turbines. 

3.5. Scenario design 

We assessed the current GHG emission intensity (for the year 2019) 
and built a series of scenarios to quantify the mitigation potential of 
installation of new turbines (i.e., shifting the turbine mix towards larger 
sizes), reduction in wind curtailment, and advancement in turbine 
design. The current status and the assumptions for the three mitigation 
scenarios were developed as follows:  

- 2019: the situation with the current proportions of installed wind 
turbines rated at different powers in each province (i.e. at the na
tional scale, 20% of turbines rated at less than 1.5 MW; 45% between 
1.5 and 2 MW; 29% between 2 and 2.5 MW; 4% between 2.5 and 
3 MW; and 2% rated at 3 MW or more. See Table S4 for the pro
portions for different provinces). All turbines are assumed to follow 
the average design efficiency (nominal power per engineering-based 
size) obtained from the engineering-based model.  

- BAU scenario: In this case, economic potential and energy policy 
determines the installed proportions of wind turbines of different 
sizes (i.e., the turbine mix). The recent and current trend is towards 
ever larger wind turbines with higher nominal power (McKenna 
et al., 2016), and so for this scenario it is assumed that the current 
turbines are gradually replaced by newly-installed ones with higher 
nominal power, and that the proportions of different turbines in the 
new installations follow the national proportions of newly-installed 
turbines in 2018 (i.e., 4% of turbines in the range 1.5–2 MW; 73% 
in the range 2–2.5 MW; 10% in the range 2.5–3 MW; and 13% with 
3 MW or more; CWEA, 2019). Therefore, the installed turbine pro
portions eventually reach those of 2018.  

- Reduced curtailment scenario: A high wind-energy curtailment rate 
was once a major factor contributing to low wind-energy generation 
(Lu et al., 2016). Although wind-energy curtailment has been largely 
reduced at the national scale (from 21% in 2016 to 4% in 2019; NEA, 
2017; NEA, 2020), it is still a serious problem in the three northern 
regions (Table S1). Therefore, there are significant geographic vari
ations in the further mitigation potential of reducing curtailment. In 
this scenario, on top of the assumptions of the BAU scenario, it is 
assumed that the curtailment of wind energy would reduce to 0.5% 
with no transmission constraints (Jorgenson et al., 2017) due to 
increasing transmission capacity and the rapid development of 
pumped hydro storage and electric boilers. 

- Advanced design scenario: In this study, it is assumed that the re
lationships of GHG vs. D2h3/7 and nominal power vs. D2h3/7 follow 
the scaling power law (Caduff et al., 2012): 

Table 3 
Methods, parameters, and equations used in the harmonization procedure. 
The procedure involved harmonization for system boundary, lifetime, emission 
factors and capacity factor. The harmonized system boundaries of the GHG 
emissions consist of the following five stages: (1) manufacturing (GHGmanu), (2) 
construction and installation (GHGcons), (3) operation and maintenance 
(GHGoper), (4) transportation (GHGtrans) and (5) disposal (GHGdisp). Lifetime of 
wind turbines in different publications (LTpub) was harmonized to 20 years. The 
emission factor (EFpub, i) of each material was unified using values from the IPCC 
report and previous studies (EFi, see Table S2). The capacity factor (CF) of wind 
power for China and for each province was calculated as the ratio of electricity 
generation to installed capacity in 2019.  

Harmonization 
parameter 

Harmonization method Harmonization formula of 
GHG emissions 

System boundary Five stages: manufacturing, 
construction and installation, 
operation and maintenance, 
transportation, and disposal 

GHGharm = GHGmanu +

GHGcons + GHGoper + GHGtrans 

+ GHGdisp 

Lifetime, LT 20 years GHGharm = GHGpub
LTpub

20  
Emission factors, 

EF 
According to the IPCC GHGharm = GHGpub

∑

EFpub,impub,i

EFi  
Capacity factor, 

CF 
Electricity production 
efficiency 

CF = electricity generation/ 
capacity  

Table 4 
Theoretical engineering-based scaling factors between variables.  

Parameter proportional to  

Nominal power ∝ D2 Arias-Rosales and Osorio-Gómez (2018) 
Nominal power ∝ D2h3/7 Caduff et al. (2012) 
GHG emission ∝ Mtotal 

GHG emission ∝ D2h3/7 

D: rotor diameter (m); h: hub height (m); M: mass (t). 
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GHG ∝ (D2h3/7)β                                                                              (2)  

NP ∝ (D2h3/7)γ                                                                                 (3) 

Theoretically, the scaling exponents β and γ are equal to 1 (Table 3). 
The scaling factor γ indicates the design efficiency of the turbines while 
the scaling factor β indicates the marginal efficiency of manufacturing 
production. From equations (1)–(3), we find that α = β - γ. Without 
further development of production technique or efficiency, there can be 
no further change in the scaling factor β. Advanced design to improve 
efficiency can be defined as a larger nominal power per D2 or D2h3/7 for a 
turbine (i.e., a higher γ in equation (3)). Such an increase in design ef
ficiency then leads to a decrease of emission intensity (i.e., a smaller α in 
the simplified LCA models) defined as total GHG emissions per nominal 
power (as in equation (1)). Therefore, in the advanced design scenario, 
in addition to the assumptions in the BAU scenario, it is assumed that all 
installed turbines are replaced by well-designed ones that reach the 
potential efficiency (i.e., a high γ) given by the engineering-based 
models. Here, the potential efficiency was calculated from the higher γ 
predicted as the 95% quantile regression (QR95) result from the 
engineering-based models. 

3.6. Calculating GHG emissions and emission intensities 

The simplified LCA models (i.e., the GHG-NP models) for China’s 
wind energy were used to estimate provincial GHG emissions. The na
tional GHG emissions from wind energy were then calculated as the sum 
of the emissions from the individual provinces. The GHG emission in
tensities were calculated by dividing the total GHG emissions (tonne 
CO2 eq) by the total power generated (kWh). The numbers of installed 
wind turbines with different nominal power outputs were derived from 
the global Wind Energy Market Intelligence database (https://www.th 
ewindpower.net). This database contains details of the number of tur
bines and the total installed capacity for 48% of the wind farms 
included. 

3.7. Statistical analysis 

The variables were log-transformed for the analysis to normalize the 
distributions and minimize patterns in the residuals (Sibly et al., 2012). 
Thus, for the analysis, the power functions of the engineering-based 

models and simplified LCA models were transformed into linear func
tions. Ordinary least-squares regression was used to develop the models. 
Quantile regression was used to explore the potential maximum nominal 
power in response to engineering-based size under the potential design 
efficiency. The R package quantreg (Koenker, 2018) was used to conduct 
the quantile regression, and the R package simba (Nekola and White, 
2004) was used to test the similarity of coefficients between 
engineering-based models and simplified LCA models. All the re
gressions and ANOVAs were implemented in R version 3.4.2 (R Devel
opment Core Team, 2017). 

4. Results 

4.1. Engineering-based models of China’s wind turbines 

The results show that the designed nominal power of China’s wind 
turbines was sublinearly scaled with engineering-based size from rotor 
diameter D and hub height h (i.e., the scaling factor was less than 1). The 
designed nominal power was allometrically related to D2h3/7 with a 
scaling factor of 0.67 (Fig. 2a) and scaled against D2 with a scaling factor 
of 0.75 (Fig. 2b). Using the most efficient turbines with the highest 
specific rating (i.e., the QR95), the scaling factor reached 0.82 for the 
NP-D2h3/7 relationship and 0.91 for the NP-D2 relationship. 

4.2. Simplified LCA models based on reviewed studies 

The results of the simplified modelling show that the nominal power 
scaled against D2h3/7 with a scaling factor of 0.66 and against D2 with a 
factor of 0.77 (Fig. 3), values which were consistent with the scaling 
factors derived from the regression results of engineering-based size 
models (Fig. 2; P < 0.05). The results indicate that the wind turbines 
used in previous LCA studies could effectively represent the current 
design efficiency of China’s turbines. 

Harmonized GHG emissions were scaled against nominal power, 
D2h3/7, D2 and Mtotal with scaling factors of 0.94, 0.81, 0.94 and 1.05, 
respectively (Fig. 4). All the scaling factors, with the exception of GHG- 
D2h3/7, were not significantly different from 1 (P1.0 ≥ 0.05). The GHG 
emission contributions of turbines and foundations were significantly 
different, with the GHG emission observed to be 1.00 when scaled with 
the foundation mass, Mfoundation, but 0.96 when scaled with the turbine 
mass, Mturbine (including components of tower, nacelle, rotor and hub). 

Fig. 2. Engineering-based relationships of nominal power versus engineering-based size using a database of installed wind turbines in China (https://www.thewind 
power.net). Solid lines represent the ordinary least-squares regressions (OLS), and dashed lines represent the quantile regressions (QR05 and QR95). 
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Fig. 3. Empirical relationships of nominal power versus engineering-based size based on the LCA studies reviewed here.  

Fig. 4. Empirical relationships of GHG emission versus parameters of engineering-based size: nominal power, engineering-based size D2h3/7 and D2, total mass 
(Mtotal), foundation mass (Mfoundation), and turbine mass (Mturbine). 

Fig. 5. Models of GHG emission intensity 
(a) and total GHG emissions (b) versus 
nominal power, and the shift of turbine 
mix from the 2019 status towards larger 
sizes assumed in the BAU scenario (c). Red 
and purple lines in (a) and (b) represent the 
simplified LCA models based on reviewed 
studies for the 2019 status, and under the 
advanced design scenario, respectively. Red 
and blue shades in (c) represent the distri
butions of turbines rated at different nominal 
power in 2019 and under the BAU scenario.   
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Fig. 5 shows the regression results for these models at the national 
scale. Considering the capacity factor of each province (Table S1), 
simplified models were developed based on nominal power for esti
mating the GHG emission intensity for each province. In 2019, there is 
only a marginal decrease in the GHG emission intensity following the 
increase in nominal power (red line in Fig. 5a), resulting in a total GHG 
emission increase following nominal power with a scaling factor (α; see 
equation (1)) close to 1 (red line in Fig. 5b). In Fig. 5c the distribution of 
turbines rated at different nominal power in 2019 is shown in red, while 
the turbine mix of the BAU scenario is shown in blue. The models of GHG 
emission intensity and total GHG emissions versus nominal power for 
the BAU and “Reduced curtailment” scenarios are the same as those of 
2019 (i.e., the red lines in Fig. 5a and b). In the scenario with advanced 
design to reach high efficiency, the scaling factor of GHG emission in
tensity versus nominal power dipped from − 0.06 to − 0.22 and that of 
total GHG emission vs. nominal power dipped from 0.94 to 0.78. 

4.3. National and regional GHG estimates under different scenarios 

The results show that the national GHG intensity per unit power 
generation was 19.88 g CO2 eq/kWh in 2019 (Fig. 6). For the three 
scenarios, the BAU scenario, the reduced curtailment scenario, and the 
advanced design scenario, the national average GHG emission in
tensities were 19.47 g CO2 eq/kWh, 18.80 g CO2 eq/kWh and 15.59 g 
CO2 eq/kWh, respectively. The corresponding mitigation potentials for 
GHG intensity compared to the 2019 value were 2.1%, 5.4% and 21.6%. 

The distribution of provincial GHG emission intensity was signifi
cantly different from that of the national GHG emissions (Fig. 7a). There 
were wide variations between different provinces, ranging from 13.59 to 
34.50 g CO2 eq/kWh. 18 of the 31 provinces have a GHG intensity higher 
than the national average of 19.88 g CO2 eq/kWh (Fig. 7b). Henan 
province has the highest GHG emission intensity, while Yunnan prov
ince has the lowest. 

For most provinces, GHG emission intensity under the BAU scenario 
was lower than that in 2019 (Fig. 7b). In the reduced curtailment sce
nario, provinces with a larger installed capacity have higher mitigation 
potentials. The top 5 provinces for GHG mitigation through reducing 
wind curtailment account for 43% of the national total generation. In the 
advanced turbine design scenario, the GHG emission intensity remained 
higher than the current national average in only two provinces (Henan 
and Qinghai). 

5. Discussion 

5.1. Effects of advanced design and turbine size in China 

We found that the engineering-based scaling factor of China’s wind 
turbines is lower than the theoretical value of 1 (Fig. 2), indicating that 
there are great opportunities for the enhancement of wind turbine 

design efficiency in China. The scaling factors of European turbines are 
0.76 for nominal power vs. D2h3/7 (Caduff et al., 2012) and 0.96 for 
nominal power vs. D2 (Arias-Rosales and Osorio-Gómez, 2018). 
Compared to the European turbines, the design efficiency of China’s 
turbines is still low, with scaling factors of 0.67 and 0.75 for nominal 
power vs. D2h3/7 and vs. D2, respectively. The values can reach 0.82 and 
0.91, respectively, under optimized design efficiency, according to the 
QR95 regression from the most efficient turbines with the highest spe
cific rating in China (Fig. 2). Our results show that the turbines with high 
design efficiency (i.e., the QR95 regression) have reached a similar ef
ficiency level to that in Europe. Increases in D and h have a larger po
tential to increase power generation than improvements to turbine 
structure and materials, but there has been a divergence between the 
benefits of larger rotor swept areas and larger hub height (McKenna 
et al., 2016). When considering the levelized cost of electricity (€/kWh), 
taller hubs are more efficient than larger swept areas, especially in sites 
with low wind potential (Rinne et al., 2018). Therefore, the desirability 
of installing bigger turbines with larger rotors or a taller tower depends 
on both geographical and economic potential. 

According to data from the LCA studies reviewed here, the GHG 
emission intensity only decreases by 4% when doubling the nominal 
power of turbines (derived from the slope of the 2019 line in Fig. 5a). 
But the GHG emission intensity can be decreased by 14% with advanced 
turbine design with high efficiency, providing an additional emission 
reduction per kWh of power generated. This value is close to the miti
gation potential due to the increased turbine nominal power of Euro
pean wind energy (Bhandari et al., 2020; Caduff et al., 2012; Mendecka 
and Lombardi, 2019). 

5.2. GHG emissions of wind energy 

This study provides a comprehensive estimate of China’s GHG 
emission intensity from wind energy at the provincial and national 
scales. We obtained a value of emission intensity of 19.88 g CO2 eq/kWh 
for all installed onshore turbines by the year 2019. Our intensity esti
mate is higher than those made in previous studies. Wang et al. (2016) 
reported an emission intensity of 5.6 g CO2 eq/kWh based on wind en
ergy production. Using data from 2013 as a baseline, Ding et al. (2017) 
reported a value of 8.42 g CO2 eq/kWh with a capacity factor of 51%. If a 
capacity factor of 19.31%, as used in this study, had been used, the 
emission intensity value would have been 22.24 g CO2 eq/kWh, close to 
our estimate. There are two reasons for the possible estimation bias in 
previous studies: 1) top-down input-output methods based on life-cycle 
inventory from different sectors may underestimate the emissions of low 
quantity materials or life-cycle stages such as transportation (e.g. Wang 
et al., 2016); 2) studies, such as Li et al. (2018), focusing on the GHG 
emissions of power generation systems, use emission factors from the 
IPCC report directly, ignoring geographical and technological 
variations. 

Fig. 6. National GHG emission intensities of wind energy of China in 2019 and under different scenarios. The arrows represent the mitigation potential under 
different scenarios compared to the 2019 value. 
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The average GHG emission intensity of onshore wind power in China 
(19.88 g CO2 eq/kWh) is close to the global average (19 ± 13 g CO2 eq/ 
kWh; Schlömer et al., 2014). The value is much lower than those in 
developing countries, such as Ethiopia (33.6 g CO2 eq/kWh; Teffera 
et al., 2021), and is close to, or higher than, those of developed coun
tries, such as the United States (18 g CO2 eq/kWh, Alsaleh and Sattler, 
2019), Czech Republic (19 g CO2 eq/kWh; Šerešová et al., 2020), 
Denmark (15 g CO2 eq/kWh; Besseau et al., 2019) and Australia (12.85 g 
CO2 eq/kWh; Wolfram et al., 2016). 

Our results show that wind energy in China has an emission intensity 

more than 98% lower than traditional fossil fuels (1050 g CO2 eq/kWh 
in China) (Ding et al., 2016) and the mitigation effect can reach 84%– 
98% compared to the energy mix in 2020 (with emission intensity 
ranges from 117 to 771 g CO2 eq/kWh in China; Li et al., 2018). The 
intensity is also lower than that of hydropower (24 g CO2 eq/kWh; Xia 
and Zhong, 2020), solar power (44 g CO2 eq/kWh; Ludin et al., 2018), 
and geothermal power (72 g CO2 eq/kWh; Zhao et al., 2019) in China 
and lower than the global intensities for fossil fuels (>500 g CO2 
eq/kWh), solar power (85 g CO2 eq/kWh), biomass (45 g CO2 eq/kWh), 
geothermal (27 g CO2 eq/kWh) and hydropower (26 g CO2 eq/kWh) 

Fig. 7. The GHG emission intensity of wind energy by province. (a) The spatial distribution of GHG emission intensity in 2019 and under different scenarios. (b) 
National mean GHG emission intensity in 2019 (dashed line) and the intensity for each province in 2019 and under different scenarios (ordered from high to low; 
solid lines and dots), and installed wind capacity for each province by 2019 (grey bars). 
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(Amponsah et al., 2014; WNA, 2011). Wind energy has great economic 
potential with a lower levelized cost of electricity compared with other 
renewables (LAZARD, 2020) and, if allowed by geographical conditions, 
it has been shown to be one of the most suitable energy sources for GHG 
emission mitigation. 

The results revealed large differences in GHG emission intensities 
between different provinces in China. Henan had the highest provincial 
emission intensity (34.50 g CO2 eq/kWh), nearly three times than that in 
Yunnan (13.59 g CO2 eq/kWh). Geographical position is one of the 
dominant factors affecting the environmental performance (as with 
GHG emission intensity) of all renewable sources. For example, 
geothermal energy is only available in specific locations, while the LCA 
emissions of solar power also depend on the duration and strength of 
sunlight (Ludin et al., 2018). In most areas hydro plants have emissions 
comparable with other types of renewables (3–70 g CO2 eq/kWh), but 
the GHG emissions of those located in tropical regions can reach 
8–6647 g CO2 eq/kWh, a value which is even higher than fossil fuel 
emissions (Song et al., 2018). 

Within China, Inner Mongolia has the largest provincial wind power 
industry, with high power generation efficiency and good control of unit 
emissions (Fig. 7b). As the province with the fastest growth of power 
generation systems in China, the energy transition of Inner Mongolia, 
from coal power to high-efficiency wind power, has made a great 
contribution to the emission reduction of the energy sector, decreasing 
from the highest level in China in 2013 to the national average in 2019 
(Ding et al., 2017; Li et al., 2018). 

5.3. Emission reduction strategy of China’s wind energy 

The development direction of wind power in China will shift from 
quantity assurance specified in the 13th five-year plan to quality 
improvement in the 14th five-year plan (CPC, 2020). Our research 
shows that the shift towards larger wind turbines (the BAU scenario) as 
well as reduced curtailment and advanced design to improve efficiency 
can all lead to further emission mitigation of wind energy (Fig. 6). 
Compared to further reducing wind curtailment, advanced design was 
shown to be more efficient in mitigating GHG emissions. The results 
show that advanced design would reduce GHG emission intensity by 
21.6% from 19.88 to 15.59 CO2 eq/kWh. The value of 15.59 CO2 
eq/kWh is in line with the global 2 ◦C target for the 2050 CO2 intensity 
of electricity production without negative emissions from carbon cap
ture and sequestration (CCS) (Bruckner et al., 2014). Selection of tur
bines requiring fewer manufacturing materials and with higher nominal 
power increases environmental performance and decreases the energy 
input. No size effects on emission of increasing foundation inputs 
(Fig. 4e and f) indicated that the structure and materials of foundations 
need to be further optimized and upgraded. In 2012, a high curtailment 
rate and poor turbine quality contributed to the low efficiency of China’s 
wind industry (Lu et al., 2016). We have shown that, currently, turbine 
quality may be the sole factor for improving wind-energy efficiency. In 
the future, a substitution of large and high-efficiency turbines for 
dismantled power systems should be an effective strategy for emission 
mitigation in the case of unchanged production techniques. However, 
considering the increasing cost of energy inputs (Ederer, 2014) and 
environmental impacts such as the collision risk posed to birds (Tabas
sum et al., 2014), it is unreasonable to construct turbines with nominal 
power greater than 10 MW. 

The curtailment of wind electricity was once a primary factor in the 
low efficiency of wind farms in China, especially in northern regions of 
the country (Lu et al., 2016). In these regions, coal-fired combi
ned-heat-and-power plants account for most of the electricity generation 
to meet the demand for heating systems in winter when wind conditions 
are most favorable but often wasted. The curtailment level for most 
regions in the United States dropped to 1%–4% in the mid-2010s (Bird 
et al., 2014), while that of China was at a massive 21% in 2016 (NEA, 
2017). The curtailment level dropped to 4% in 2019 (NEA, 2020) due to 

the expansion of transmission networks and the rapid development of 
pumped hydro storage and electric boilers. Further mitigation potential 
under the reduced curtailment scenario is effective in northern regions, 
including Xinjiang, Inner Mongolia and Gansu which account for a third 
of the national total installation, while limited in other regions (Fig. 7b). 

In addition to turbine size, design efficiency and wind-energy 
curtailment, lifetime and manufacturing production are also contribu
tors to the reduction of emission intensity (Padey et al., 2013). Installed 
sites with a large wind resource potential have been preferentially 
selected for deployment in China, especially in the northern and 
northeastern regions, which ensures that the theoretical capacity factor 
is approached (Davidson et al., 2016). Further improvement of lifetime 
and manufacturing production will be reached mainly through the use of 
new materials and more efficient mechanical design and structures. 
Development of technology, such as drive machinery with super
conducting generators, blades possessing automatic adaptivity and 
intelligent power networks, could reduce the loss from energy capture 
and power generation, increase annual operating hours and improve the 
reliability of wind systems (McKenna et al., 2016). Furthermore, the use 
of natural, rather than man-made, fibers and biological materials such as 
wood, bamboo, flax and straw, along with the application of novel 
paints containing nano-composites, can all reduce emissions during 
manufacturing, reduce the replacement frequency of components during 
operation and make components fully-recyclable (Zangenberg and 
Brøndsted, 2015). The development of new materials could result in the 
decrease of GHG emissions per engineering-based size (i.e., decrease the 
scaling factor β in equation (2)) which is assumed to be constant in this 
study. Such techniques suggest that the GHG emissions of wind energy 
could be decreased further by future technology developments. 

5.4. Uncertainty 

We specifically accounted for provincial differences in capacity fac
tor as well as in the height of turbines, which directly relate wind geo
potential to annual energy production (Sedaghat et al., 2017), and thus 
play important roles in the GHG estimates for the electricity produced 
(Mendecka and Lombardi, 2019). However, there are still geographical 
differences within each province, especially for some areas with large 
differences in elevation or surface roughness. These differences will lead 
to variations in wind speed conditions at different installation sites and 
changes in the practical load factor. Power performance in centralized 
wind farms can also be influenced by wind wake, which is determined 
by the layout of turbine arrays (Dupont et al., 2018). 

Material manufacturing is the main source of GHG emissions in LCA 
studies. Despite the harmonization of the main materials, there may be 
differences and omissions in the materials lists of the selected studies. 
For example, rare materials such as NdFeB are not considered in some 
cases, which will impact on our emission estimates. In addition, the 
remaining stages are usually considered as a percentage of the 
manufacturing stage because replacement parts during operation and 
final disposal are expected to be proportional to the input materials. 
However, determining whether or not the size of turbines affects the 
proportion allocated to different stages requires further study. Further
more, if the GHG emissions caused by different land use changes are 
considered in the construction and installation stage, the emission value 
of this stage will be significantly increased, possibly even exceeding the 
material manufacturing stage (Gao et al., 2019). Therefore, the uncer
tainty of the system boundary and the proportions allocated to different 
stages need further exploration. 

6. Conclusion 

We reviewed LCA studies of wind energy systems in China, and 
developed a simplified LCA model based on the reviewed studies to 
estimate the GHG emission intensities of China’s wind power at pro
vincial and national scales. The emission intensity of China’s wind 
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energy is 19.88 g CO2 eq/kWh (ranging from 13.59 to 34.50 g CO2 eq/ 
kWh for different provinces), close to the global average intensity. Based 
on the results of three scenarios, we found that the shift towards larger 
wind turbines and reduced curtailment can lead to further emission 
mitigation of wind energy at the national level by 2.1% and 5.4%, 
respectively. Furthermore, developing turbines with more advanced 
design and higher efficiency can effectively reduce GHG emission in
tensity by 21.6%. Our study provides a comprehensive estimate of GHG 
emissions of China’s wind power system, and the results can be used in 
designing scenarios and formulating policy regarding the future energy 
mix. Simplified LCA models rely strongly on the detailed LCA works for 
different turbines. More detailed LCA works of turbines made in China 
and for various newly-designed turbines could further increase the ac
curacy of the emission predictions. In addition, future works to estimate 
mitigation contribution of wind energy under different climate policy 
scenarios could help formulate climate and energy policy. 
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